If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-3x=72
We move all terms to the left:
2x^2-3x-(72)=0
a = 2; b = -3; c = -72;
Δ = b2-4ac
Δ = -32-4·2·(-72)
Δ = 585
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{585}=\sqrt{9*65}=\sqrt{9}*\sqrt{65}=3\sqrt{65}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-3\sqrt{65}}{2*2}=\frac{3-3\sqrt{65}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+3\sqrt{65}}{2*2}=\frac{3+3\sqrt{65}}{4} $
| 25=6(c+7)-15 | | 4x(3x+13)=8 | | 15x+4=6x-x | | 15x+18x=20 | | x-3+36=648 | | 2x2+5x+20=0 | | (X+2)(2x-3)=72 | | 20°+4y°+y=180° | | -x+2=2(3x-6 | | 3(20–t)=18 | | 2y^2+y-11=(y+1)^2 | | (5•3)(100•3+25•2+1)=x | | 5u²+3u+14=0 | | 1x/2^(2)+6x-432=0 | | 7(4-7a)=217 | | 3(a–17)=90 | | 114(m+3)=3(2m-2) | | (g-3)(g-5)=49 | | 5u^2+3u+14=0 | | 8x+16=9(x-16) | | 14+4y+6=5-2y+5y | | X=-2(3-y) | | (x)+(1/2x)=180 | | 7x-10=-2x=17 | | 6h−–5=95 | | -22=-2y+13 | | y/4-2=-14 | | (7y+13)/5=-10 | | 10x+19=10x+17 | | 4t^2-24t-3=0 | | (5x+5)+(4x-5)=180 | | I0x+19=10x+17 |